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Abstract-Materials which contain an unstable portion in the stress-strain relation frequently
exhibit patterns of deformation characterized by alternating bands oflarge and small deformations.
Certain metals produce these deformations as they undergo plastic straining or phase trans­
formations. A rate-dependent material law including a field of imperfections is employed in a finite
element model to produce a pattern oflarge and small deformations which resembles those observed
experimentally. An essential feature of the formulation is the inclusion of a softening branch to the
stress-strain curve to trigger the localization of strains, followed by a hardening branch to arrest it.

I. INTRODUCTION

Elastic-plastic materials and materials which undergo phase transformations often exhibit
very distinctive patterns of deformations consisting of alternating bands. In adjacent bands,
the material is in markedly different states of deformation. We have not seen any com­
putations of the response of these materials which replicate these bands in any detail. The
closest replication of a band-like structure has been by Collins and Luskin (1988), who
showed a pattern of alternating deformation modes in a mesh of quadrilateral elements;
however, the frequency of alternation coincided with the element size, which evokes the
question of whether the phenomenon they observed was related to the discretization.

Silling (1988) has reported several interesting calculations of materials with phase
changes around crack tips by means of dynamic relaxation. A salient feature of his com­
putations was the lack of uniqueness in the results,

We have also found that in very homogeneous problems, the presence of an unstable
branch in the stress-strain curve in a rate-independent material results in very chaotic
results: the different phases are scattered almost randomly through the mesh, This is not
surprising in view of results of Abeyaratne and Knowles (1991) that an infinite number of
solutions exist in certain load states for such materials. However, when viscous regular­
ization is used in the material model, the behavior becomes less chaotic (we are not
speaking of chaos in the mathematical sense here). Nevertheless, the band-like patterns of
deformation which are widely observed cannot be replicated,

It is shown here that when a pattern of imperfections is introduced into a material
which contains softening and rehardening, the banded structure emerges clearly as the
model is deformed. In fact, one can observe patterns of band growth such as are observed
experimentally.

The common characteristic in certain elastic-plastic materials and phase changes which
underlies the formation of these patterns is the presence of a portion of the stress-strain
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Fig. I. Elastic stress-strain law with phase transitions.

response of the material where the stress decreases with increasing strain, as shown in Fig. 1.
In this portion of the stress-strain curve, the material behavior is unstable in the sense
of Hadamard (1903) and Hill (1962). The need for regularization of a rate-independent
unstable material can be illustrated by a static bar subjected to end traction t. If t lies
between am and aM in Fig. I, then there are three possible values of strain-cj, C2, c)-for
every point.

Bazant and Belytschko (1985) showed that for rate-independent materials with an
unstable branch that falls to zero stress, the onset of unstable material is limited to a set of
measure zero and results in infinite strains. Subsequently, Belytschko et al (1987) showed
that in a rate-independent material, even a small unstable portion, when followed by a
perfectly plastic response, results in infinite strains on a set of measure zero. Both of the
above studies were limited to one-dimensional bars under dynamic response.

Needleman (1988) has shown that the viscoplastic models developed to model strain­
rate effects and other characteristics of metals under dynamic loads provide a regularization
of the unstable material response, which differs from Landau-Ginsburg regularization.
Although the applicability of viscoplasticity to phase changes is not clear, the principal
purpose of the calculations given here is to show the qualitative character of the response.

2. FORMULAnON

2.1. Elastoviscoplastic constitutive model
We will use an additive decomposition of the rate-of-deformation tensor into elastic

and plastic parts,

(1)

where L is the spatial velocity gradient, L = vV, and D is the rate-of-deformation tensor.
This leads to the elastoviscoplastic constitutive equation

v
a = C : De = C: (D - DP) (2)

v
where a is the co-rotational stress rate of the Cauchy stress tensor, and C is the material
moduli tensor for isotropic elasticity. The viscoplastic rate-of-deformation DP is calculated
by means of a von Mises flow model,
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DP = y--

2a

where s is the deviatoric stress tensor,

s == O'-~(O': 1)1

and (j is the effective stress,

-2 3
(J = 2:S: s.

The effective plastic strain rate, Y, is given by a power law rate relation,

~ . [ (j Jl/my=a -
9('1)
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(3)

(4)

(5)

(6)

which is supported by experimental evidence, Asaro (1983) and Klopp (1985), over a large
range of strain rates for elastic-plastic response, but its applicability to phase changes is
still a matter to be investigated. The hardness function 9('1) depends on the accumulated
effective plastic strain '1,

(7)

2.2. Numerical procedure
The weak form of the momentum equation provides the basis for the finite element

discretization in space.

(8)

where ou is any function in the space of CO functions which disappear on the essential
boundary r ll' Q is the domain, C is the natural boundary, and b is the vector of body
forces. This must be solved simultaneously with the elastoviscoplastic constitutive relation

v { [ (j ll ..m 3S}
0' = 0' - W . 0' - 0' • W

T = C: D - a 9('1) 2(j

(discussed in the previous section). The boundary conditions are

U(X, t) = ii on r u

O"O'(X,t)=t on r t •

(9)

(10)

(11)

To discretize eqn (8) by finite elements in space the domain Q is divided into elements Q.,

and ou and U are approximated on each element by the interpolants

Ue(X) ~ N(X)de(t)

OUe(X) ~ N(X)Ode(t).

(12)

(13)

Subscripted e's denote quantities defined on the element e. The boolean matrix Le extracts
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members from the vector of globally interpolated displacements and arranges them in the
corresponding elemental vector

(14)

(15)

Expressing the vectors and tensors of eqn (8) in matrix notation and substituting eqn (12),
(13), (14) and (15), the semi-discrete equations of motion are obtained.

(16)

M represents the global lumped mass matrix; fext , the external force vector; and finh the
internal force vector. The choice of the explicit central difference approximation in time
yields the fully discrete equations,

(17)

which must be combined with a finite difference scheme in time of the constitutive equations,
eqn (9). In eqn (17), a superscript n refers to the time at the end of the nth time-step, nAt.
The finite difference schemes reduce the system of differential equations to a system of
algebraic equations, which may be solved by an appropriate algorithm. The form of the
algebraic system however depends on the choice of the finite difference schemes, and there
is generally some trade-off between the simplicity of the algebraic equations and the
accuracy of the approximation. The central difference scheme has been chosen to approxi­
mate the momentum equation (producing an explicit algorithm).

It therefore remains to choose a scheme to discretize the elastoviscoplastic constitutive
equation, eqn (9). To make this choice, an examination of the constitutive equation in the
following form is instructive.

[
aJI!!n 3C :S

iJ = W'O'+O"WT +C:D-a - -~.
g(y) 2a

(18)

The left side contains the only time derivative term to be approximated, iJ (a being an
empirical parameter). Approximating iJ over the interval from nAt to (n+ l)At by
(t1"+ I_O'")/At, the terms of the right side must then be evaluated at some point in the
interval. This can be expressed by the superscript (n +e)At, where 0 ~ e ~ 1.

0'"+1_0'" { [ a J1/!n3C:S}("+8l"H
--c---= W'O'+O"WT+C:D-a - --

At gm ~
(19)

The values e= 0, 1/2, I correspond to forward, central and backward difference schemes,
respectively. In general, the value of eaffects both the accuracy and computational effort
of the resulting scheme.

We shall begin by considering accuracy. Terms which change at an increasingly rapid
rate render the forward difference scheme much less accurate than the other two schemes.
The nonlinear last term of the right side-which involves the viscoplastic strain rate­
changes in such a manner in the unstable part of the material response, due to high values
of the exponent. Thus the use of e= 0 for this term greatly compromises the accuracy of
the scheme. The other terms of the right side are not as highly nonlinear as the last term,
and therefore do not compromise accuracy so severely when they are evaluated at e= O.

With regard to computational effort, any value of e other than e= 0 produces a
nonlinear equation in O'n+ I. It is desirable to avoid this since solving nonlinear equations
for O'n+l for each element for each of the many time-steps required by an explicit scheme
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becomes intractable. A solution which includes an estimate of the last term of the right side
for e -:p 0, and which remains linear, would be an optimal compromise. Such a construction
is possible by expanding this term about the time nM in a Taylor series, and keeping only
the linear part. Details of this formulation are given in Pierce, Shih, and Needleman (1982)
(who refer to it as the tangent modulus method), along with numerical examples which
demonstrate the need for e> O. The resulting algorithm consists of (i) solving the explicit
equations of motion for dn+ 1, (ii) updating y according to the numerical integration of eqn
(7), and then (iii) updating (J by the tangent modulus method.

3. NUMERICAL RESULTS

3.1. One dimension
To examine the behavior of the viscoplastic formulation with softening and reharden­

ing, a study is made of a simple one-dimensional model on x E (0, I). It is deformed by the
prescribed end displacements,

u(O, f) = 0 (20)

u(1, f) = vf (21)

where v = 1.0 m S-I. The hardness function g(y; x) can be subdivided into go(Y), the part
which describes the evolution with effective plastic strain y, and g(O; x), the part containing
the spatial variation. Spatial variations in g(y; x) are used to represent the inhomogeneous
behavior caused by thermal effects or material imperfections. In this example, a small
variation is introduced, with a maximum of one half of one percent at x = 0.50, Fig. 2, so

{
(1.00-0.0IX)r

g(y;x) = go(y)+g(O;x) = go(y) + (0.99+0.01x)r
for x < 0.5

for x? 0.5.
(22)

The values of the material parameters are not intended to reflect those of a specific material.
The parameters characterizing the hardness function are defined in Fig. 3, which illustrates
the three stages of response. The material parameters are: E (the elastic modulus) = 100
MPa, r = I MPa, YM = rlE = 0.01, Ym = 30YM = 0.3, g,11 = 25 MPa, g,jill = -I MPa,
g.jilll = 2.5 MPa (Fig. 3), a = 0.002, m = 0.02, and p = 0.001 kg m- 3

. The initial conditions
are intended to minimize inertial effects so that the deformations will primarily reflect the
nature of the constitutive relation.

u(x, 0) = 0 (23)

V(x,O) = VX. (24)

1.0I-r--------------,

1

0.5% maximum
imperfection

1.000.750.500,25
0.98:-+------,-----r--...,.----l

o
x

Fig. 2. Initial hardness function g(O; x) displaying imperfection.
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Fig. 3. Evolution of the hardness function with effective plastic strain.

Parameters of the numerical discretization are: () = 0.5, N (number of elements) = 49,
!:J.t = 1.0 X 10-5 s; and the elements are linear.

Figure 4 is a plot of the total strain at successive points in time. Belytschko et at (1990)
have demonstrated that the size of a band of localized strains depends on the size of the
imperfection in the hardness function g(y; x). Figure 4 shows clearly that when the material
has passed stage I (which occurs at 1 = YM = 0.01), the strains begin to localize at the center
of the bar. To this point, the strains behave just as they would for a model which does not
exhibit rehardening (stage III). Kulkarni and Belytschko (1991) performed a linearized
perturbation analysis on the elastoviscoplastic equations of motion and showed that the
condition for growth of a perturbation is that g.y < 0. For the model under consideration,
the perturbation takes the form of the imperfection in g(y; x) and the condition for its
growth, gil < 0, defines stage II. It has been demonstrated by Belytschko et at (1990) that
the perturbation does not grow in an initial stage of hardening, where g.y > 0, and it does
not here. But the condition for the growth of a perturbation is also violated in stage III,
and the localization which occurs in stage II cannot, therefore, continue when the material
has entered the hardening zone of stage III. In Fig. 4, 1m = 0.2 and the numerical results
show that the growth rate of the strains slows down when y reaches Ym' The initial band of

0.5

0.4

0.3

E

0.2

0.1

0
0 0.2 0.4 0.6 0.8

X

Fig. 4. Total strain distribution at successive points in time (plotting time increment = 3000Ll.t).
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high strain gradient then splits into two bands propagating like waves in opposite directions.
In their wakes lies a virtually homogeneous region of strains where "I > 1m, which replicates
the behavior observed in Uiders deformations. The macroscopic manifestation of this
behavior is an apparent "delocalization" of strains. When the waves reach the ends of the
bar, the entire domain again becomes homogeneous and remains as such for the duration
of the deformation. Although the imperfection remains in the hardness function, its influ­
ence on the strain distribution is quite minor after the entire bar reaches the rehardening
stage. The pattern of deformation is also characteristic of a material whose stress-strain
relation contains an unstable portion due to a phase transformation.

Figure 5a is a plot of the stress versus total strain in the center element of the bar. The
initial sharply increasing segment is dominated by elastic deformation, as evidenced by the
equality of its slope and the elastic modulus. The next segment, characterized by a smooth
mild negative slope, reflects plastic deformations and is separated from the elastic segment
by a peak in the stress. This segment corresponds to the softening portion (stage II) of the
hardness function, and is completed before any element reaches stage III. In the final
segment, associated with rehardening, unloading temporarily occurs in every element and
the element which is softening causes the stress to drop in the entire mesh. The element in
the softening range must then reach the hardening part of its stress-strain relation, causing
the stress to increase in the entire mesh, before the next element can soften. Then when the
next element does soften, the stress drops and the cycle is repeated. Elements which are
equidistant from the center element go through softening and rehardening simultaneously,
as the waves in Fig. 4 move toward the ends of the bar. The final effect is a series of
unloading-and-reloading cusps. For the element at the middle of the bar, element 25 (Fig.
5a), all the cusps occur in stage III, since all other elements soften and reharden after it
does. For element 13 (Fig. 5b) half of the cusps occur in stage II and half in stage III, since
half of the elements soften and reharden before it, and half after. For the element at the
left end of the bar, element 1 (Fig. 5c), all the cusps occur in phase II because all the other
elements soften and reharden before it does. The portion of the plot in Fig. 5b between the
two bundles of cusps is in fact a cusp itself, elongated by the large strains of the softening
and rehardening process occurring in that element.

Multiple imperfections can be represented by a hardness function which contains
several minima, Fig. 6. The next example illustrates the effects of such a model on the
deformation process. The material properties, loading conditions, and initial conditions are
the same as in the previous example, except that the initial hardness function, g(O; x), now
takes the form in Fig. 6. The evolution of the strain distribution is shown in Fig. 7. It can
be seen that localization is triggered by each of the minima in the hardness function. As the
deformation progresses, the maximum plastic strains exceed the limit of the softening stage,
Y> "1m, and their rates then decrease to near zero. Delocalization subsequently occurs as
the waves of large strain gradient move away from the points of localization. When waves
traveling in opposite directions meet, the deformation becomes homogeneous again.

3.2. Two dimensions
The one-dimensional model of the previous section served to demonstrate the basic

evolution of deformation produced in a material with imperfections and a stress-strain
relation containing an unstable portion. In two dimensions, the transition region between
zones of high and low strains takes the form of a band. The development and subsequent
motion of these bands are influenced by the fields of stress and imperfections.

Ananthan and Hall (1991), Hall (1970) and Nadai (1950) have documented for various
alloys that tension tests generate Uiders bands at approximately 45° to the tensile axis, and
the resulting deformations are predominantly shear strains. Thus the crucial stress in the
initiation and development of the bands is that of shear. Also, it is demonstrated by
Ananthan and Hall (1991) that the bands form in straight lines, with insignificant deviations
at the grain boundaries. This implies that although the grain structure may influence the
initiation of the bands (such as determining the exact location, or whether the angle will
differ slightly from 45°), the morphology of the bands is driven by compatibility. The
following plane strain examples illustrate the ability of the current formulation to reproduce
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Fig. 5. Stress-strain plots at element: (a) 25; (b) 13; and (e) I.

these observed features. Material model parameters for all the examples were the same and
chosen as those typical of mild steels: £=211 GPa, v=0.3, a=0.002 s-1, m=O.OI,
r = 460 MPa, and p = 7.8 g cm- 3

.

In the first example, we show that a moderate isolated imperfection results in a single
band, and how rehardening affects its growth. A bar is subjected to prescribed displacements
at each end. Twofold symmetry allows the modeling of only one quadrant; see Fig. 8. In
the problem, the nodes at the left boundary of the mesh are fixed in the x-direction, those
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Fig. 6. Initial hardness function g(O; x) displaying multiple imperfections.
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Fig. 7. Total strain distribution at successive points in time (plotting time increment = 6000At).
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- prescribed displacements

Q] region of FE solution

Fig. 8. Elongation of a bar.

at the right boundary are displaced in the x-direction. Free movement in the y-direction is
allowed for all nodes but those on the bottom boundary, including those at the right and
left boundaries. This arrangement is designed to model the elongation of a segment of a
tension specimen which is far enough from the grips of the testing machine to avoid any
transverse stresses caused by them, thus allowing the development of a homogeneous,
tensile stress field.

The hardness function includes a small imperfection centered in the middle of the bar;
x = y = 0 in Fig. 8,
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g(JI;x,Y) = go(7)+9(0; r) = go(j!) +r[1.00-0.0l e(-r/ro)] (25)

in which r = J x2 + y 2 and scaling factor fo = 0.000543. The maximum imperfection is one
percent of the undisturbed field. The dependence of the hardness function on the effective
viscoplastic strain is contained in go(7), which is characterized by the parameters YM = 0.01,
Ym = 0.1, g,y! = 2800 MPa, g,flI = g,fr/4, and g,y[[1 = g,y! (as defined in Fig. 3 for the undis­
turbed field of the one-dimensional example). Constant velocities are prescribed: Ux = vt,
where v = 4.0 m S-I. The body is initially at rest. The numerical discretization of the 0.004
by 0.0025 m domain is achieved by a mesh of 40 by 25 square, four-node quadrilateral
elements. One point integration is employed with perturbation stabilization, Flanagan and
Belytschko (1981), and a time-step of 2.0 x 10- 5 s and a tangent modulus parameter
e= 0.50.

Figure 9 shows plots of the effective plastic strain Y after 20,000 time-steps, demon­
strating the localization of plastic strains in a band approximately 45° to the tensile axis.
(Meshes with elements of different aspect ratios produce a band at the same angle.) At this
stage in the deformation, the maximum effective strains are just reaching the softening
limit and the effects of rehardening have not yet been realized. The significance of this
configuration is the development ofthe band oflarge plastic shear strains, (i) from boundary
and loading conditions which produce a uniform field of tensile stresses, and (ii) when the
inhomogeneity is identical in all directions emanating from its center. This feature of
the deformation has previously been reproduced numerically by Needleman (1989) and
Belytschko et al. (1994) with softening viscoplastic models. Their models did not contain
rehardening; continued loading, therefore, results in continued localization of shear strains
in the band. Experiments in the quasi-static loading regime [e.g. Ananthan and Hall (1991)]
for mild steels, indicate, however, that continued loading causes the band to split into two
separating interfaces-as described in the one-dimensional results-leaving a region of
nearly uniform, large plastic strains. This delocalization accommodates the prescribed
displacements in a manner quite different from that of continued localization. It should be
mentioned that loading rates of these computations, chosen to reduce inertial effects, model
closely the testing conditions under which real experiments demonstrate delocalization. For
the same materials under highly dynamic conditions, thermal softening cancels the effect
of rehardening, and localization continues to material failure. The results of Needleman
(1989) and Belytschko et al. (1994) model the dynamic experiments [see, for example,
Marchand and Duffy (1988)].

Figure 10 shows the effective plastic strain distribution after continued loading to
32,000 time-steps. The contours show that the waves have separated and the resulting
plastic strain field between them is nearly homogeneous and somewhat greater than the
upper limit of the stage II strains. Thus, the delocalization exhibited in the one-dimensional
example is manifest in two dimensions as the separation of two bands of high shear strain
gradient at 45° to the tensile field-eonsistent with experimental results.

The purpose of the next example is to show that a two-dimensional structure of
imperfections will result in a pattern of bands which resembles patterns often formed
by Uiders bands and phase transformations. It also illustrates the observation that the
morphology of Liiders bands is determined by compatibility of strains, not by the material
grain structure. Figure 11 shows the 0.005 m square block which is subjected to pure shear,
and the region of the finite element solution. In order to simulate the slight inhomogeneities
caused by the granular structure of metals, the hardness function includes small variations
in each direction. Figure 12 is a plot of the initial hardness function, which is given by,

[ (61tX) (61tY)Jg(y; x,y) = go(y)+r 1.00+0.01 cos d +0.009cos d (26)

where d = width of the model specimen = 0.0025 m and go ('1) is the undisturbed field. The
imperfections are not identical in both directions (1.0% in the x-direction and 0.9% in the
y-direction) in order to simulate the slightly anisotropic character of the real imperfections
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Fig. 9. Effective plastic strain distribution after 20,000 steps.
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Fig. 10. Effective plastic strain distribution after 32,000 steps.
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Fig. 12. Initial hardness function g(O, x, y).
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Fig. 13. Effective plastic strain distribution after l4,000 steps.
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in any material. A specimen of coarse-grained steel this size will likely exhibit this difference
to a greater extent since the crystal grains are anisotropic and their size (several grains per
mm) is significant compared to the specimen size. All the model parameters, the loading
rate, and all the discretization parameters are identical to those of the previous example,
with the exception of the mesh, which is 30 by 30 elements.

Figure 13 is a plot of the effective plastic strains after 14,000 time-steps. It reveals the
formation of six bands of high strain gradient which have evolved from three parallel
bands of localization. The regions between the bands alternate between small strains (light
shading) and large plastic strains (dark shading), thus simulating the development of
multiple Ltiders bands-a phenomenon often observed in experimental results, even in
those of simple tensile specimens [see Hall (1970)]. Figure 14 is a plot of the effective plastic
strains after 20,000 time-steps, and Fig. 15 is the corresponding deformed mesh. The
contours in Fig. 14 show that a field of parallel bands of high strains has evolved from an
initial state of nearly homogeneous grain structure, as represented by the imperfections in
the hardness function, Fig. 12. The reasons for this development are that the specimen is
not perfectly identical in both directions-as any real specimen is not-and the material

0.002

0.0015
y

0.001

0.0005

o
o 0.0005 0.001 0.0015 0.002 0.0025

Fig. 15. Deformed mesh after 20,000 steps.
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response includes softening. Both conditions are necessary: if the specimen imperfections
were identical in both directions and the material unstable, identical bands of deformation
would form in both directions; and if the material were stable but the specimen not
identical in both directions, localizations would not occur and no bands would form. Once
localization begins in the softening regime, it is the requirement that the strains produce
deformations which are compatible with those prescribed at the boundaries, which drives
the deformation into the banded structure.

Comparison of Fig. 14 to Fig. 13 illustrates the movement of the bands of high strain
gradient away from the lines of localization, increasing the regions of large strains and
decreasing the regions of small strains. This is the two-dimensional analogue of the process
of delocalization depicted in Fig. 7.

4. CONCLUSIONS

It has been shown through computational studies that in the presence of imperfections,
unstable material models can lead to band-like patterns of deformation such as are observed
in Liiders bands and phase transformations. In the simulations, the equations of motion
were solved with an explicit scheme, but the loads are applied quite slowly so that dynamic
effects are minor. A viscoplastic model was used to avoid the difficulties associated with
unstable material models.

The constitutive parameters for this model would be difficult to measure in the strain­
softening range because in the strain-softening response a specimen will generally not
remain homogeneous. Alternatives to this constitutive model are more fundamental
approaches based on dislocation models with dislocation multiplication and annihilation,
but these are still quite computationally intensive and were therefore not used. Nevertheless,
the model qualitatively shows patterns of deformation similar to those observed in exper­
iments.

The two-dimensional calculation was the more interesting. It showed that in the
presence of a complex pattern of imperfections of very small magnitude (about one percent)
in the strength of the material, band-like patterns of deformation emerge as long as the
imperfection has a slightly stronger amplitude in one direction. Furthermore the size of the
bands depends on the scale of the imperfections. Since imperfections are always present in
real materials, this suggests that the widths of the bands in unstable response represent the
scale of dominant imperfections. In the problems studied here, the bands aligned with the
direction of the stronger imperfection. We have attempted to obtain two sets of bands
which are orthogonal to one another and contained in separate regions of the same
specimen, as are often observed, but were not successful.
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